Cranberry pomace modified by solid-state bioprocessing with the food-grade fungi Rhizopus oligosporus and Lentinus edodes was investigated for antimicrobial effects against Helicobacter pylori. The results indicated that solid-state bioprocessing enriched the cranberry pomace with phenolic antioxidants and important phenolic phytochemicals such as ellagic acid. The antimicrobial activity of the extracts against H. pyloriwas also enriched by solid-state bioprocessing. Further, the results also indicated that the antimicrobial activity correlated strongly with total soluble phenolic content and ellagic acid, suggesting different modes of antimicrobial function. A dose-dependent analysis of antimicrobial activity suggested that there could be a possible synergistic mode of interaction between the phenolic phytochemicals. Solid-state bioprocessing of cranberry pomace using the food-grade fungi R. oligosporus and L. edodes could therefore be an innovative approach to develop antimicrobial ingredients for dietary management of H. pylori infections.