A group of arylalkyl isothiocyanates were tested for their abilities to inhibit tumorigenicity and DNA methylation induced by the esophageal-specific carcinogen, <it>N-nitrosomethylbenzylamine (NMBA) in the F344 rat esophagus. Phenylpropyl isothiocyanate (PPITC) was more potent than either phenylethyl isothiocyanate (PEITC) or benzyl isothiocyanate (BITC). Phenylbutyl isothiocyanate (PBITC), however, had a lesser inhibitory effect on esophageal tumorigenesis, and phenylhexyl isothiocyanate (PHITC) actually enhanced esophageal tumorigenesis. Thus, the two- and three-carbon isothiocyanates were more effective inhibitors of NMBA-esophageal carcinogenesis than the longer chain isothiocyanates. The effects of the isothiocyanates on tumorigenesis were well correlated as to their effects on DNA adduct formation. The most likely mechanism of inhibition of tumorigenesis by these isothiocyanates is via inhibition of the cytochrome P450 enzymes responsible for the metabolic activation of NMBA in rat esophagus. A freeze-dried strawberry preparation was also evaluated for its ability to inhibit NMBA-esophageal tumorigenesis. It proved to be an effective inhibitor, although not as potent as either PEITC or PPITC. The inhibitory effect of the berries could not be attributed solely to the content of the chemopreventive agent, ellagic acid, in the berries.